A new motorized three-point-bending apparatus has been developed that is capable of automating strain engineering experiments on two-dimensional (2D) materials. The setup can be used to apply precise, uniform strain to 2D materials such as MoS2, allowing researchers to study the effects of strain on the electrical and optical properties of these materials. The system can also be used to study straintronic devices, devices whose output characteristics can be adjusted by means of applied strain.
By mimicking a biological cell plasma membrane, i.e. the membrane that separates the interior of the cell from the outside environment, researchers have demonstrated that a 2D reduced graphene oxide membrane can regulate complex polysulfide chemistry in lithium-sulfur batteries. The efficiency of this separator in controlling the polysulfide chemistry and its sub-micron thickness allows to minimize the amount of electrolyte needed, which enables lightweight, high energy density batteries.