The micro/macrochannels engineered within the aerogel facilitate the ability to heal chronic diabetic wounds, while a novel protein incorporated into the aerogel provides anti-microbial capabilities and promotes wound tissue coverage and new blood vessel formation.
Embroidering power-generating yarns onto fabric allowed researchers to embed a self-powered, numerical touch-pad and movement sensors into clothing. The technique offers a low-cost, scalable potential method for making wearable devices.
Research has demonstrated for the first time that certain chemical coatings, applied to micro/nanoparticles, can alter their swimming propulsion within biological fluids.
Recent investigations suggest that topological semimetals reveal unique properties that can enable unprecedented functionalities for future electronics. New research results shed light on the specifics of electron transport in quasi-one-dimensional topological Weyl semimetals and can be important for their proposed applications as downscaled interconnects. The results obtained in this work can be used for developing assessment methodologies for the reliability of topological semimetals.